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Abstract

This paper studies the delayed damage model in a one-dimensional transient analysis. It is well-known that kind of

model prevents the mesh dependency when it is used in a finite element code. The model problem concerns a clamped

uniaxial damage elastic bar submitted to a step load at its extremity. In order to guarantee the correct behaviour of the

model and to be able to choose the appropriate mesh size before performing a finite element calculation, an analytical

evaluation of the size of the damaged zone called characteristic length is given and compared to the converged nu-

merical results. Finally, a two-dimensional example is treated with a damage with or without the delay effect.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical damage models used in numerical analysis suffer from mesh dependence and usually lead to

localization of the deformation into a single element. The mesh dependency is a well-known problem that is

encountered for example with strain-softening materials and several models exist that avoid the dependency

on the mesh. One could quote in particular the non-local model, the rate-dependent model or the gradient-

dependent plasticity model (Bazant and Pijaudier-Cabot, 1998; de Borst et al., 1990; Needleman, 1988).
This paper focuses on a model developed at the ‘‘Laboratoire de M�eecanique et de Technologie de

Cachan’’ amongst others by Allix and De€uu (1997), Allix et al. (1999), De€uu (1997) and Ladev�eeze (1991)
named delayed damage model where a delay effect is introduced. Considering that the classical damage

models allow the damage rate to increase indefinitely, the original idea was to introduce a limitation of the
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damage rate in the damage evolution law. Until now, the previous authors have always limited the use of

this model to composite laminates, although the damage rate limitation can also solve the localization

phenomenon for simpler materials as elastic material with damage or any other material with damage

(Suffis and Combescure, 2002).
The aim of this study is to allow the choice of an appropriate mesh size for numerical analysis of this type

of model. The present paper focuses on the one-dimensional problem and to some extent on the two-

dimensional problem. It is organised as follows. The first part of this paper analyses the delayed damage

model in order to underline its main properties and, in particular, its ability to solve the localization problem.

Whereas De€uu has studied the fracture duration in detail, this analysis addresses the fracture size in order to
choose the appropriate mesh size for the calculation. This process requires an approximation of the fracture

size to be known a priori, otherwise several calculations will be necessary to chose the right mesh. An ana-

lytical pre-determination of the fracture size close enough of the exact solution allows one to choose im-
mediately the appropriate refinement. For a one-dimensional example, an analytical characteristic length

has been calculated with a simplified delayed damage model and the results have been compared to the

numerical solutions; this development is presented in a second part. The next part validates the one-

dimensional method by comparing the analytical curves with the numerical results. Moreover, a numerical

analysis of the order of accuracy of the delayed damage model was carried out to validate the numerical

results. Finally, two-dimensional examples treated with or without the delayed damage model are presented.

2. Delayed damage model

This section presents the delayed damage model and the analysis is limited to the case of an elastic

damage material (even if it can be applied to several types of materials (Suffis and Combescure, 2002)). As

stated in Section 1, classical damage models are mesh dependent. So, firstly, the main equations and

properties of the damage model without delay effect are described (Allix et al., 1999; Chaboche and

Lemaitre, 1996). Then, a one-dimensional example is treated in order to show the localization phenomenon.

Next, a characteristic time which is the foundation of the delayed damage model will be introduced (Allix
and De€uu, 1997; Allix et al., 1999; Ladev�eeze et al., 2000); model equations are then presented and results of
numerical simulations are given.

The central difference algorithm is used to integrate explicitly the equation of motion (Hugues, 1987).

Without the non-linearities introduced by the delayed damage model, it guarantees a second-order accuracy

with respect to the time. Simulations are performed with an element of constant size Dx. The central dif-
ference method is conditionally stable; thus, there exists a critical time step Dtcrit beyond which the cal-
culation diverges. For a one-dimensional problem, Dtcrit corresponds to the time for an elastic wave to pass
through an element. Hereafter, the time step is taken equal to the critical one (it is generally chosen equal to
the critical one multiplied by a safety factor). We will see in Section 4.2, how the convergence order is

conserved even if the delayed damage model is used when the mesh and hence the time step are both re-

duced.

For the examples treated in this part and all those which will follows (except when specified otherwise),

the material parameters are taken equal to E ¼ 57 GPa, q ¼ 2280 kg/m3 (so that the wave velocity inside

the material is equal to c ¼ 5000 m/s), Y0 ¼ 0 MPa, Yc ¼ 0:23 MPa.

2.1. Classical damage model

2.1.1. Classical damage evolution law

The study is limited to a one-dimensional example of a bar subjected to tension. This model was first
proposed by Bazant and Pijaudier-Cabot (1998) for analysing the mesh dependency phenomenon on strain-
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softening materials. The material is elastic; the Young�s modulus is noted E and the density q. There is only
one variable representing the damage, it varies from 0, for an undamaged material, to 1, for a fully

damaged one, and is noted D. The damage evolution is driven by the damage energy release rate Y (which is
deduced from the strain energy density ED) and the damage is taken linear from a threshold value Y0 to a
critical one Yc. We could note that, in our case, the damage energy release rate is proportional to stress and
also to strain. Moreover, damage can only increase and this increase is possible only under tensile stress

conditions which open cracks, enabling their growth. This distinction between tension and compression

leads one to consider only the positive part of the stress (denoted by h�i) when defining Y . The complete
equations are given in Eq. (1). Two types of stress appear in these equations; the classical stress r which
corresponds to the macroscopically measured quantity and the effective stress reff which correspond to a
microscopic quantity (Lemaitre, 1996). This last stress is linear as a function of the strain.

It is important here to point out that the stress versus strain curve obtained for a zero-dimensional
example (single element clamped on one side and with an imposed displacement on the other) is inde-

pendent of the strain rate, so that the same curve is obtained whatever the imposed velocity.

reff ¼ Ee

r ¼ ð1� DÞhreffi � h�reffi ¼ Eð1� DÞhei � Eh�ei

ED ¼ 1
2

hri2

Eð1� DÞ þ
h�ri2

E

" #

Y ¼ oED
oD

����
r¼Cst

¼ hri2

2Eð1� DÞ2
¼ Ehei2

2

f ðY Þ ¼
ffiffiffiffi
Y

p
�

ffiffiffiffiffi
Y0

pffiffiffiffiffi
Yc

p
�

ffiffiffiffiffi
Y0

p

D ¼ hsup
s6 t

ðf ðYsÞÞi if d < 1

D ¼ 1 otherwise

(

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð1Þ

2.1.2. Dynamic analysis for a bar

We consider here the classical problem of a bar of 0.1 m in length under tension clamped at one ex-
tremity and subjected to an imposed displacement or load on the other (Bazant and Pijaudier-Cabot, 1998),

Fig. 1 gives its description. A similar configuration is obtained with a strip submitted to simple shearing

(Needleman, 1988). It is convenient to avoid wave reflection. Therefore, loadings are chosen so that rupture

appears on the free extremity of the bar. We observe that rupture happens as soon as the limit of stability

(i.e. D ¼ 0:5) is reached in a single element and then, rupture (i.e. D ¼ 1) occurs in this element whatever the
size of the mesh (see Fig. 2). This phenomenon reflects a mesh dependence. Indeed the size of the localized

zone is always reduced to one element. Mathematical considerations of this problem are not treated in this

F(t)

L

E, ρ,
S=1m²

t (µs)

F=σS

Fmax

m=1µsτ

Fig. 1. One-dimensional bar in tension, imposed load on the right side (one could as well impose the displacement).
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paper, but some authors like De Borst have studied this aspect (de Borst et al., 1990). Besides, the damage

reaches 1 in only one element once the limit of stability is exceeded. It means in particular that rupture

occurs immediately after this event (in one time step) whatever the loading velocity and the size of the mesh.

So, the smaller the time step, the higher the damage rate. This observation led De€uu (1997) to introduce a
delay effect in the damage.

2.2. The delay effect

2.2.1. Fundamental equation

As stated before, the damage rate is not limited when the mesh is refined. It tends towards infinity.

Physically, this characteristic seems to make little sense. Indeed, there must be a characteristic damage

evolution which defines a limitation of the damage rate. This idea was the basis of the delayed damage

model first proposed by a team of the ‘‘Laboratoire de M�eecanique et de Technologie de Cachan’’ within the
framework of the studies on the rupture of composite laminates (Allix and De€uu, 1997; Allix et al., 1999;
De€uu, 1997). In the model developed, two parameters are introduced. One is the characteristic time sc
representing the inverse of the maximum damage rate. The equation of the damage rate evolution reads:

_DD ¼ 1
sc
½1� expð�ahf ðY Þ � DiÞ� if D < 1

D ¼ 1 otherwise



ð2Þ

where a is the second parameter of the model. One observes the classical definition of damage without delay
f ðY Þ. The damage rate is calculated from the difference between this classical damage without delay and the
damage D with delay effect. In this way, a fast variation of the damage energy release rate will not lead to an
immediate evolution of the damage. The damage will evolve with a certain delay fixed by the characteristic

time independent of the mesh.
The immediate consequence is that, for the stress versus strain curve of a zero-dimensional example, the

higher the strain rate, the higher the maximum stress (Allix et al., 1999; De€uu, 1997). Indeed, the limitation
of the damage rate allows the stress to increase more than in a classical model, so that the nearest element

will damage when several elements are used.

2.2.2. Dynamic analysis for a bar

The example presented in Fig. 1 is studied again, but now with an imposed displacement. Fig. 3a shows
the final damage along the bar with a length of 0.1 m meshed with n elements and a strain rate at the

Fig. 2. Damage profile along the bar. Results for different meshes (zoom on the right extremity) without delay effect. Damage is

confined into a single element.
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extremity of 250 s�1. The damage parameters used for this simulation are sc ¼ 2 ls and a ¼ 10 and Y0 is
here chosen equal to 0.05 MPa. Several simulations have been realised, modifying only the mesh size and

hence the step time. The following conclusions can be drawn:

• the damaged zone is not confined to a single element (characteristic of the mesh dependency phenome-

non),

• the size of the damage zone is independent of the mesh,

• the profile of the damage along the bar is independent of the mesh,
• the energy dissipated in the bar is constant whatever the mesh.

All these conclusions show that the delayed damage model guarantees a solution independent of the mesh .

Additional simulations have been performed with several velocities (Fig. 3b); the same conclusions are

obtained. However, the size of the fully damage zone (i.e. the zone where the damage is equal to 1) evolves

with the velocity. The higher the strain rate imposed at the extremity of the bar, the larger the size of the

fully damage zone. This conclusion is coherent with the results obtained for a single element (Allix et al.,

1999; De€uu, 1997). Indeed, when the strain rate increases, the stress increases more than with a classical
model and more elements are damaged. That means in particular that if one is able to determine ap-

proximately the fracture length a priori, one would be able to chose the appropriate mesh. The next part

deals with the analytical determination of the fracture length for a one-dimensional problem.

2.2.3. Choice of parameters

In this paper, it is supposed that the parameters sc and a are known. Different sets of parameters have
been chosen for each example in order to show that the model works for a large range of parameters.

The identification of the two parameters can be performed using specific tests. For example, Sen Gupta

investigated a 3D Carbon/Carbon laminate (Allix and Sen Gupta, 2001; Sen Gupta, 2001) from an experi-

mental stress versus pulsewidth curve obtainedwith plate impact experiments (Goeke andMcClintock, 1975).

3. Analytical determination of the characteristic length

The exact analytical solution of the full problem has not been found, although all the constitutive
equations are known. It is necessary to simplify the damage evolution law to determine a coherent

Fig. 3. Damage profile along the bar. (a) The results for different meshes (the fully damaged zone is approximately 9 mm) with delay

effect. (b) The evolution of the length of the fully damaged zone with strain rate with delay effect.
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characteristic fracture length. The study will be confined to the front of the stress wave. This section details

the simplification made in the damage evolution law, then an analytical length is calculated as a function of

a critical stress which will be defined in a later paragraph.

3.1. Simplification of the damage evolution law

The classical damage evolution law with delay effect introduced by De€uu (1997) reads for an elastic
damage material:

_DD ¼ 1

sc
ð1� expð�ahf ðY Þ � DiÞÞ if D < 1; D ¼ 1 otherwise ð3Þ

with

f ðY Þ ¼
ffiffiffiffi
Y

p
�

ffiffiffiffiffi
Y0

pffiffiffiffiffi
Yc

p
�

ffiffiffiffiffi
Y0

p and Y ¼ r2

2E
ð4Þ

The study is limited to what happens just after the front of the stress wave passed. Thus, damage is ini-

tiating at that point and hence D � 0. The function h of x expressing the damage rate in front of the stress
wave can be written as follows:

hðxÞ ¼ 1

sc
ð1� expð�ahxiÞÞ ð5Þ

We approximate this function by a Heaviside function with values 0 and 1=sc. A critical stress (hence a
critical damage energy release rate) fixes the boundaries of each domain. This critical value has to be chosen

with care (see Section 3.3). Eq. (6) summarises this simplification.

_DD ¼ 1

sc
if rP rcrit; _DD ¼ 0 otherwise ð6Þ

3.2. Analytical characteristic length

The example presented in Fig. 1 is studied once more. The load applied to the bar is a step (the rise time

sm is zero), the stress step is denoted by Dr.
The equations which govern the behaviour of the bar read:

reffðx; tÞ ¼ Eeðx; tÞ

eðx; tÞ ¼ ouðx; tÞ
ox

rðx; tÞ ¼ ð1� Dðx; tÞÞreffðx; tÞ

orðx; tÞ
ox

¼ q
o2uðx; tÞ

ot2

8>>>>>>>>><
>>>>>>>>>:

ð7Þ

where x and t denote respectively the space variable and time and where the damage D follows the simplified
evolution law described by Eq. (6). One can combine these equations and deduce a second-order differential

equation that is only a function of the effective stress and the damage (see Eq. (8)).

o2ðreffðx; tÞð1� Dðx; tÞÞÞ
ox2

¼ q
E
o2reffðx; tÞ

ot2
¼ 1

c2
o2reffðx; tÞ

ot2
ð8Þ

3468 A. Suffis et al. / International Journal of Solids and Structures 40 (2003) 3463–3476



Eq. (8) can be rewritten as follows:

lim
dx!0

1

dx2
reffðxð

�
þ dx; tÞð1� Dðxþ dx; tÞÞ � 2reffðxþ dx; tÞð1� Dðxþ dx; tÞÞ

þ reffðxþ dx; tÞð1� Dðxþ dx; tÞÞÞ
�
¼ 1

c2
lim
dt!0

1

dt2
ðreffðx; t

�
þ dtÞ � 2reffðx; tÞ þ reffðx; t � dtÞÞ

�
ð9Þ

As interest is limited to the solution on the wave front, the following relations between space and time are

considered:

x ¼ ct
dx ¼ cdt



ð10Þ

where c is the wave velocity in the non-damaged material. One can first remark that stress and damage are
zero before the wave front passes at point x ¼ ct; this leads to:

reffðxþ cdt; tÞ ¼ 0
reffðx; t � dtÞ ¼ 0
Dðxþ cdt; tÞ ¼ 0

8<
: ð11Þ

Introducing now the simplified damage model (see Eq. (6)), one can deduce:

Dðx; tÞ ¼ 0
Dðx� cdt; tÞ ¼ dt

sc

8<
: ð12Þ

Inserting Eqs. (11) and (12) in Eq. (9), the differential equation becomes:

dreffðtÞ
dt

þ 1

sc
reffðtÞ ¼ 0

reffð0Þ ¼ Dr ðinitial conditionÞ

8<
: ð13Þ

where reffðtÞ represents the effective stress just behind the front of the stress wave. The solution of the
differential equation (13) reads:

reffðtÞ ¼ Dr exp



� t

sc

�
ð14Þ

This solution remains true until reff P rcrit (condition expressed in Eq. (6)). Hence, we can derive a limit
time:

tlim ¼ sc ln
Dr
rcrit


 �
ð15Þ

Multiplying the two sides of Eq. (15) by the wave velocity in the non-damaged material, we deduce a

characteristic length:

Lc ¼ csc ln
Dr
rcrit


 �
ð16Þ

In Eq. (15), a critical stress rcrit appears. It is not defined yet, but one can already see its importance. A
study of a discrete model with the same simplification has been performed (Suffis and Combescure, 2002).
Initially, a small dependency on the mesh was obtained, but the length rapidly converges towards the

analytical result when the mesh is refined.

A. Suffis et al. / International Journal of Solids and Structures 40 (2003) 3463–3476 3469



3.3. Critical stress

Using the result of Eq. (16), two analytical values of the critical stress can be obtained from the nu-

merical results. A minimum critical stress will correspond to a maximum characteristic length and a
maximum critical stress will correspond to a minimum characteristic length.

The minimum critical stress must be equal to the stress leading to a damage initiation in the full delayed

damage law (see Eq. (17)).

rmincrit ¼
ffiffiffiffiffiffiffiffiffiffi
2EY0

p
¼ r0 ð17Þ

The maximum critical stress is given by Eq. (18):

rmaxcrit ¼
ffiffiffiffiffiffiffiffiffiffi
2EY0

p
þ 3

ffiffiffiffiffiffiffiffiffiffi
2EYc

p
�

ffiffiffiffiffiffiffiffiffiffi
2EY0

p

a
¼ r0 þ 3

rc � r0
a

ð18Þ

It corresponds to the stress leading approximately to a damage rate equal to 95% of the maximum damage

rate 1=sc in an initially non-damaged material.

4. Numerical analysis for a one-dimensional example

Up to now, only the consequences on the time until fracture have been explored (De€uu, 1997). This part
focuses on the comparison of the numerical fracture length and the analytical one. Then, the similarities of

numerical and experimental results are pointed out. In the mean time, the influence of the parameters on

the characteristic length can be studied. Finally, the convergence of the model is analysed, and some results

are given for the one-dimensional bar.

4.1. Numerical characteristic length

4.1.1. Comparison between analytical and numerical results

First, the measurement of the characteristic length using the numerical results must be clarified; it

corresponds to the length for which damage is exactly equal to 1 at the end of the calculation. The cal-

culations were stopped when the damage did no longer evolve. As the wave reflection must be avoided to

identify the characteristic length without ambiguity, the length of the bar was chosen such that this last

condition was satisfied. For the example treated in Section 2.2.2, the characteristic length is around 9 mm

(see Fig. 3a).

The evolution of the characteristic length versus the stress step is plotted in Fig. 4. The delayed damage
parameters a and sc are respectively equal to 10 and 5 ls. The results are independent of the mesh re-

Fig. 4. Characteristic length versus stress step (logarithm), numerical results and analytical boundaries.
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finement under the condition that elements are small enough to capture the fracture. The minimum stress

required for fracture is linked to the value of the damage release rate threshold Y0; in this case, r0 is equal to
75.5 MPa. One can observe a very good correlation between analytical and numerical characteristic length.

Fig. 4 shows in particular that the numerical results follow the upper boundary L0%c for loadings near the
threshold stress r0. For more severe loadings, the evolution of the characteristic length remains linear with
the same slope, but is closer to the lower boundary. Again one can find the same behaviour for each nu-

merical analysis whatever the delayed damage parameters and the material parameters (Suffis and

Combescure, 2002).

In conclusion, this analysis allows one to observe that the analytical model fits the numerical results. It

permits an excellent prediction of the fracture length in the case of a one-dimensional bar.

4.1.2. Influence of damage model parameters

The influence of the damage model parameters clearly appears in Eqs. (16)–(18). A variation of the

characteristic time sc involves a similar variation of the slope of the characteristic length versus the stress
step curves L0%c and L95%c (with a logarithmic scale for stress). A variation of the parameter a influences only
the maximum stress (see Eq. (18)); it does not affect L0%c and induces a variation of the distance between L0%c
and L95%c . De€uu, who studied this influence in terms of fracture duration has already given an interpretation
of the parameter a which is larger for �brittle� materials than for �ductile� ones (Allix et al., 1999). As stated
before, the numerical results are in good agreement with the analytical one whatever the delayed damage

parameters. Thus, one can conclude that the parameters have the same influence in the numerical model as
in the analytical model. The detailed result are presented in Suffis and Combescure (2002).

4.2. Convergence analysis

This part studies the influence of the mesh refinement on the accuracy. As the time step follows the

Courant condition (i.e. the time step corresponds to the time required for the wave passing through the

smallest element of the structure multiplied by a safety factor), refining the mesh generates a decrease of

the time step by the same amount. So, the convergence with respect to time and space is analysed simul-
taneously. If the algorithm is first-order accurate with respect to �time and space�, dividing the mesh (and
thus the time step) by two generates a division of the error by a factor of two; if it is second-order, the error

is divided by four and so on and so forth. . . Thus the accuracy order can be determined with the help of
numerical simulations on the one-dimensional bar as follows:

X 1 � X
X 2 � X

¼ OððDxÞkÞ
OððDx=2ÞkÞ

¼ OððDtÞkÞ
OððDt=2ÞkÞ

¼ 2k ð19Þ

where X 1 refers to a quantity calculated with a coarse mesh, X 2 with a mesh twice finer, X is the exact

solution and k is the order of accuracy which can be thus deduced. As the exact solution X is a priori

unknown, it is impossible to determine the error this way. Nevertheless, the difference between two suc-

cessive levels of refinement (the mesh of reference represents level 1, level iþ 1 corresponds to a mesh
refined 2i times) will give the same result. The two first simulations give the first difference DXi between level

i and level iþ 1, then DXiþ1 between level iþ 1 and level iþ 2 is calculated. The ratio R ¼ DXi=DXiþ1 is

equal to 2k.

X i � X iþ1

X iþ1 � X iþ2 ¼
ðX i � X Þ þ ðX � X iþ1Þ
ðX iþ1 � X Þ þ ðX � X iþ2Þ ¼ DR

X i � X ¼ OððDx=2i�1ÞkÞ ¼ OððDt=2i�1ÞkÞ

9>=
>; ) DR ¼ 2k ð20Þ
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As this study focuses on damage, the error in terms of damage and in terms of displacement are estimated.

The example of the one-dimensional bar of Fig. 1 is used again. The load applied at the extremity of the bar

is such that damage occurs but no rupture. The first numerical experiment was made with a bar meshed

with 32 elements corresponding to level 6. The material parameters are the same as those used in Section
2.2.2 except for the delayed damage model parameters (i.e. E ¼ 57 GPa, q ¼ 2280 kg/m3, a ¼ 5, sc ¼ 5 ls,
Y0 ¼ 0:05 MPa and Yc ¼ 0:23 MPa). The bar is 0.05 m in length and the calculation is done for 10 ls with a
time step equal to half the critical time step. During the first half of the calculation, the load applied grows

linearly until it reaches 50 MN and it then remains constant until the end of the calculation (i.e. Fmax ¼ 50
MN and sm ¼ 30 ls in Fig. 1).
Fig. 5a and b shows respectively the difference between successive levels for damage and displacement at

the end of the calculation. The displacements are compared at the common nodes between the two suc-

cessive levels. Moreover, each element of level i is divided in two elements to generate level iþ 1. The
damage difference is calculated between each element of level i and the average of the two corresponding
elements of level iþ 1. One can remark the noise which disturbs the results and the amplitude of the
oscillations which decreases when the level increases. That is why the convergence is sometimes quite

difficult to observe graphically. Thus, the integral of the difference between the two levels along the bar is

given in Table 1. Similar results can be obtained by integrating the difference with respect to time; indeed,

these results are available for each time t and then for the integral with respect to time.
The conclusion one can draw from this analysis is that the order of accuracy is equal to 2. This result can

also be found by refining mesh and time step in two separate steps. The first and the second step show
without ambiguity the second-order accuracy with respect to time and with respect to space respectively

Fig. 5. Difference in the solution (logarithmic scale) between two levels along the bar. (a) The difference between the successive levels in

terms of displacement. (b) The difference between successive levels in terms of damage.

Table 1

Integral of the difference along the bar between the successive levels in terms of displacement and damage and corresponding ratio

Level i Displacement Damage

DUi ¼ Ui � Uiþ1 DUi=DUiþ1 DDi ¼ Di � Diþ1 DDi=DDiþ1

6 3.73e)10 3.73 1.14e)5 2.92

7 1.00e)10 3.65 3.91e)6 3.16

8 2.74e)11 3.52 1.24e)6 3.04

9 7.78e)12 3.35 4.07e)7 2.76

10 2.32e)12 – 1.47e)7 –

11 – – – –
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(Table 2 (Panels a and b) show the difference between two successive levels in the two cases for the dis-

placement only). Whatever the convergence condition, this analysis shows that the results of the calculation

converge towards a stable solution with the mesh refinement and this convergence is second-order accurate.

4.3. Conclusions

With the two last paragraphs, one can henceforth conclude that the characteristic length for a one-

dimensional problem is well known. The analytical model developed in Section 3 predicts a characteristic

length that is close to the one observed numerically. Furthermore, the numerical solution is second-order

accurate.

5. Rupture computations

In this section, two-dimensional examples are treated. The classical example is the case described in Fig.

6 of a horizontal beam blocked at the left extremity and subjected to a vertical step load on the right

extremity. The load is equally distributed over the nodes of the right side. The computation was performed

with different meshes detailed later. A first set of simulations allows one to compare the behaviour of the
classical damage model and the delayed damage model for a two-dimensional problem.

An explicit finite-element code was specifically developed for the calculation performed hereafter; the

post-processing is realised with the help of Gmsh (Geuzaine and Remacle, 2002). The beam is meshed with

quadrangular elements with four points of integration (Hugues, 1987; MacNeal, 1994). The material

studied in this section is elastic (E ¼ 57 GPa, m ¼ 0:3, q ¼ 2280 kg/m3) with damage. The classical damage

(without addition of the delay effect) is isotropic and follows a linear law with respect to the sum of the

squares of the positive part of main deformations between a threshold value e0 equal to 0.0011 and a critical
value ec equal to 0.0034. The delay parameters are sc ¼ 10 ls and a ¼ 1. The hypothesis of plane strain is
made.

Table 2

Integral of the difference in term of displacement along the bar

Level i Dt ¼ 2:44 ns Displacement Time step

N ¼ 32
Displacement

DUi ¼ Ui � Uiþ1 DUi=DUiþ1 DUi ¼ Ui � Uiþ1 DUi=DUiþ1

Panel a Panel b

6 3.64e)10 3.59 Dtcrit=2 2.01e)10 3.85

7 1.01e)10 3.59 Dtcrit=4 5.22e)11 3.97

8 2.82e)11 3.50 Dtcrit=8 1.31e)11 4.17

9 8.07e)12 3.27 Dtcrit=16 3.15e)12 4.01

10 2.46e)12 – Dtcrit=32 7.87e)13 –

11 – – Dtcrit=64 – –

Panel a compares the successive levels with a constant step time. Panel b compares the successive time steps with a constant mesh.

Fig. 6. Two-dimensional bending beam, imposed load on the right.
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The calculation was performed with a beam of 0.1 by 0.04 m with unit thickness, for a load of 0.8 MN

and a total time of 0.25 ms. Once again, the solution on several levels is compared. It is important to note

that the increase of one level results in a division of a quadrangular element in four small quadrangular

elements; indeed, each side of the initial element Dx and Dy is divided by two. The damage profiles at the
end of the calculation are depicted in Fig. 7a–c for a material without delay effect and in Fig. 8a–c for a

material with delay effect. The lower level correspond to a beam meshed with 20 by 10 elements and the

following levels correspond respectively to a beam meshed with 40 by 20 elements and 80 by 40 elements.

The classical damage model gives results which are clearly dependent on the mesh size. For all three

meshes, the damage initiates at the bottom of the beam where the stress due to the bending exceeds the

threshold stress corresponding to e0. Then the damage evolves quickly until complete rupture. The �crack�
propagates vertically from this point until it �bifurcates� in several �cracks� which seem to evolve arbitrarily

Fig. 7. Damage profiles in a beam without delay effect.

Fig. 8. Damage profiles in a beam with delay effect.
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depending on the mesh used. One can note that what we call �crack� corresponds in fact of a continuum line
of fully damaged elements. The thickness of this line is always one element independent of the mesh. This

mesh dependency represented by this unitary thickness and this arbitrarily evolution is highlighting the

mesh dependency phenomenon. Concerning the results obtained with the delayed damage model, one can
notice that the profiles of damage are similar for each level. Like the simulations without delay effect, the

damage initiates at the bottom of the middle of the beam, but it does not lead to rupture. As the damage

evolution is slowed down by the delay, the rupture only occurs when the wave reflects on the extremity. A

fully damage zone, the profile of which remains constant independent of the mesh, appears at the bottom of

the beam and propagates vertically until complete rupture.

6. Conclusions

The first sections of this paper illustrated the essential properties of the delayed damage model. An
original approach was then presented, the aim of which is to analyse the delayed damage model in terms of

a characteristic length. The first step made above is contained in the analytical one-dimensional model

which allows one to evaluate beforehand the fully damaged zone and thus to choose the appropriate mesh

refinement. The validation of the analytical model was performed by comparing its predictions with the

numerical results. Furthermore, the second-order accuracy was demonstrated and hence one can affirm that

the analytical results are in total agreement with the numerical ones.

As an introduction to the studies to come, two-dimensional examples are presented. Once again, the

delayed damage model gives satisfactory results as it avoids the mesh dependency phenomenon.
Another possible extension is the generalisation of the model to any material with damage. Several

classes of materials have already been treated (Suffis and Combescure, 2002) and the model seems to be

adaptable to all damage materials as it only requires a small extension to the existing models. However,

before the delayed damage model can be applied to a new �material�, one has to measure the parameters a
and sc experimentally.
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